If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+6k-85=6
We move all terms to the left:
k^2+6k-85-(6)=0
We add all the numbers together, and all the variables
k^2+6k-91=0
a = 1; b = 6; c = -91;
Δ = b2-4ac
Δ = 62-4·1·(-91)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-20}{2*1}=\frac{-26}{2} =-13 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+20}{2*1}=\frac{14}{2} =7 $
| 19=x-16 | | 30p-25-5p=50 | | 3/4xx+7=22 | | 57=-9t-6 | | (5x+7)=(3x+15) | | (7n-1)2=8(15.5) | | d=3(15)+12 | | 15=3t+12 | | -7x+12=6x-9 | | 24–1.2x=42–2.4x | | 6(4x+1)=70 | | 210=-10(-6-3n) | | 4(3x+10)=6(2x+-9) | | 8x-27=4x+34 | | 4x+7x-6+126=180 | | X=x-1/2 | | 8=2x+4x= | | -6x+9=4x-2 | | 12+y=-6y | | 4(s+16)-8=-4 | | 16=s−17 | | 7x-6+4x=180 | | -1+2n-6=-7+2n | | 6(4x+1)=60 | | 2x-17=Y+23=63=180 | | (2x-4)²=0 | | 20x=27=180 | | -10(k-8)-7=133 | | (x-3)²=-2X⁴ | | 4(3r–2)=4–12r | | 21-19=5w-4w | | 2x-22=2x-5 |